On the Products of Twin Primes

Michael G. Kaarhus

February 19, 2013

Abstract

This article answers elementary questions about the products of twin primes.

I am obliged to begin with this caveat: I have not read on the subject of multiplying twin primes. And so, I don't know if anyone else has written on this. I simply wish to write about it, even though I haven't read about it.

This is a very simple topic, mathematically speaking. Yet, amateurs such as myself wonder about simple things, such as these:

- Why is the product of a pair of twin primes always $\equiv 5 \pmod{6}$?
- Given any two twin prime pairs (p, r), and (p_2, r_2) , why is $p \cdot r_2$ always $\equiv 5 \pmod{6}$?
- Why is $p \cdot p_2$ always $\equiv 1 \pmod{6}$?
- Why is $r \cdot r_2$ always $\equiv 1 \pmod{6}$?

Here I explicate the above. To understand my explications, you must first understand modulo arithmetic. Click here for a primer on modulo arithmetic. From that primer, you will understand (among other things) that, for all prime pairs $\geq (5,7)$:

- The central composite q of the prime pair (p, r) is $\equiv 0 \pmod{6}$
- All $p \text{ are } \equiv 5 \pmod{6}$. For example, $11 \equiv 5 \pmod{6}$
- All $r \text{ are } \equiv 1 \pmod{6}$. For example, $13 \equiv 1 \pmod{6}$

The principles explicated here can actually be applied to any two integers having a difference of 2, where the central integer will not necessarily be $\equiv 0 \pmod{6}$. But prime pairs provide a convenient example, so I will begin with prime pairs.

Theorem 1. $p \cdot r \equiv 5 \pmod{6}$

Proof. Begin with the fact that (all central composites q) $\equiv 0 \pmod{6}$. If you add or subtract any number of q's to or from q, you will get another integer that is also $\equiv 0 \pmod{6}$. You can say that like this:

 $q \cdot n \equiv 0 \pmod{6}$, where n is an integer.

We can even let n = q, in which case we have

$$q^2 \equiv 0 \pmod{6}$$
.

Now see that (p,r) = (q-1, q+1), and multiply:

$$(q-1) \cdot (q+1) = q^2 - 1.$$

I just showed that $q^2 \equiv 0 \pmod{6}$, so it must be that

$$q^2 - 1 \equiv 5 \pmod{6}$$
. And that's it! That's why $p \cdot r \equiv 5 \pmod{6}$

In case you still don't see, maybe you forgot that

$$p \cdot r = (q-1) \cdot (q+1)$$

= $q^2 - 1$. And $q^2 - 1 \equiv 5 \pmod{6}$, (because $q^2 \equiv 0 \pmod{6}$).

Now let's broaden to a more general case:

Theorem 2. $(p \cdot r_2) \equiv 5 \pmod{6}$, where r_2 is any r

Proof. We can represent the above this way:

$$p \cdot r_2 = (q-1) \cdot (6n+1)$$
, where n is a positive integer.

Granted, (6n + 1) will not be the second twin of a prime pair for all n. However, if you keep trying larger and larger n, you will eventually get a (6n + 1) that is the second twin of a prime pair. Expand the binomial:

$$(q-1) \cdot (6n+1) = 6nq + q - 6n - 1$$
. Consider each term.

6nq is just some multiple of 6. So we can be sure that $6nq \equiv 0 \pmod{6}$. q - 6n is just some multiple of 6. So, we can be sure that $q - 6n \equiv 0 \pmod{6}$. And we can generalize:

$$(q-1) \cdot (6n+1) =$$
(some multiple of 6) – (some multiple of 6) – 1

In other words,

 $p \cdot r_2 = (\text{some integer}) \equiv 0 \pmod{6} - 1.$ $p \cdot r_2 = (\text{some integer}) \equiv 5 \pmod{6}.$

Theorem 3. $p^2 \equiv 1 \pmod{6}$.

Proof. This is the simplest case:

$$p^{2} = (q-1) \cdot (q-1)$$

= $q^{2} - 2q + 1$

 $q^2 - 2q$ is just some multiple of q, and q is just some multiple of 6. So

$$q^{2} - 2q \equiv 0 \pmod{6}$$
, and
 $q^{2} - 2q + 1 \equiv 1 \pmod{6}$.

Now we get fancier: $p_2 > p$

Theorem 4. $(p \cdot p_2) \equiv 1 \pmod{6}$.

Proof. $p \cdot p_2 = (q-1) \cdot (6n-1)$ for some positive integer n.

 $(q-1) \cdot (6n-1) = 6nq - q - 6n + 1$. Consider the terms.

6nq is just some multiple of 6. Therefore,

$$6nq \equiv 0 \pmod{6}.$$

-q - 6n is just some negative multiple of 6. Therefore,

 $-q - 6n \equiv 0 \pmod{6}$. To generalize,

$$(q-1) \cdot (6n-1) = (\text{some multiple of } 6) - (\text{some multiple of } 6) + 1. \text{ Or}$$

 $(q-1) \cdot (6n-1) = (\text{some integer}) \equiv 0 \pmod{6} + 1, \text{ which means}$
 $(q-1) \cdot (6n-1) = (\text{some integer}) \equiv 1 \pmod{6} \text{ Or},$
 $p \cdot p_2 = (\text{some integer}) \equiv 1 \pmod{6}$

Theorem 5. $(r \cdot r_2) \equiv 1 \pmod{6}$. where r_2 is any r

Proof. In the simplest case, $r_2 = r$, and

$$r^2 = (q+1) \cdot (q+1)$$

= $q^2 + 2q + 1$

 $q^2 + 2q$ is just some multiple of q, and q is just some multiple of 6. So

$$q^{2} + 2q \equiv 0 \pmod{6}$$
, and
 $q^{2} + 2q + 1 \equiv 1 \pmod{6}$.

Now we get fancier: $r_2 > r$

 $r \cdot r_2 = (q+1) \cdot (6n+1)$ for some positive integer n.

 $(q+1) \cdot (6n+1) = 6nq + q + 6n + 1$. Consider the terms.

6nq is just some multiple of 6. Therefore,

$$6nq \equiv 0 \pmod{6}$$
.

q + 6n is just some multiple of 6. Therefore,

$$\begin{array}{l} q+6n\equiv 0 \pmod{6}. \ \mbox{To generalize},\\ (q+1)\cdot(6n+1)=(\mbox{some multiple of }6)+(\mbox{some multiple of }6)+1. \ \mbox{Or}\\ (q+1)\cdot(6n+1)=(\mbox{some integer})\equiv 0 \pmod{6}+1, \ \mbox{which means}\\ (q+1)\cdot(6n+1)=(\mbox{some integer})\equiv 1 \pmod{6} \ \ \mbox{Or},\\ r\cdot r_2=(\mbox{some integer})\equiv 1 \pmod{6} \end{array}$$

Finally, consider a not-so-intuitive formula: For any two positive integers that differ by only 2 (this includes any prime pair (p, r)),

$$p+r = \frac{r^2 - p^2}{2}$$

How do I get that? Elementary!

$$q^{2} - 1 = (p + 1)^{2} - 1$$

= $p^{2} + 2p$
$$q^{2} - 1 = (r - 1)^{2} - 1$$

= $r^{2} - 2r$
$$p^{2} + 2p = r^{2} - 2r$$

$$2p + 2r = r^{2} - p^{2}$$

$$p + r = \frac{r^{2} - p^{2}}{2}$$

To make the above true for both positive and negative integers,

$$|p+r| = \frac{r^2 - p^2}{2}$$

Specifically for the prime pair (p, r),

$$p + r \equiv (q - 1) + (q + 1) \equiv 2q.$$
 Therefore,

$$p + r \equiv 0 \pmod{6}.$$
 Therefore,

$$\frac{r^2 - p^2}{2} \equiv 0 \pmod{6}$$

Copyright

On the Products of Twin Primes Copyright © 2013 Mike Kaarhus All rights reserved