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Abstract

This article points out errors in the way some people define prime number.

In my investigations into twin primes, I encounter various definitions of prime num-
ber. Here is a typical one:

The number p is prime if p is a positive integer that has exactly two unique
factors: {1 and p}.

The above definition is vague. It can actually mean three different things, and two of
those meanings are false! Here they are:

e Meaning 1: p is prime if p is a positive integer that has exactly two unique factors:
{1 and p}.

The above meaning is false! Each prime p has exactly four unique factors:
{=p, =1, 1, and p}. It’s true that —p and —1 are not prime. However, they are unique
factors of p.

e Meaning 2: p is prime if p is a positive integer that has exactly two unique prime
factors: {1 and p}.

The above meaning is false! Each prime p has exactly one unique prime factor: p. It’s
true that 1 is a unique factor of p. However, 1 is not prime; 1 has only one unique positive
factor (not two, as primes do). Also, a good definition does not invoke the term it is
defining (prime in this case).

e Meaning 3: p is prime if p is a positive integer that has exactly two unique positive
factors: {1 and p}.

Of the above, only Meaning 3 is a correct definition. Some might think it would be correct
to say:

e pis prime if p is a positive integer that has exactly one unique prime factor.
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But that isn’t correct, either. The primes share that definition with other kinds of num-
bers. For instance, the squares of primes have exactly one unique prime factor — one that
is used twice. For instance, the unique factors of 169 are {-169, -13, -1, 1, 13, 169}. Of
those, 13 is the only prime factor; even though it is applied twice, it is only one number.
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