
Splitting the Bernoulli Numbers

Michael G. Kaarhus

December 25, 2013

Abstract

Here I present my first five Bernoulli Number conjectures. Their effect is to split the non-zero
Bernoulli Numbers≥ Bernoulli2 into one or the other of two populations. To my knowledge,
I am the discoverer of these two populations; no one else has conjectured them. None of the
sequences I introduce here were listed at OEIS when I published this.

My Bernoulli-Number-splitting conjectures enable me to obtain the residues modulo 6 of the abso-
lute values of non-zero Bernoulli numerators, without actually calculating the numerators! Maybe
that doesn’t sound very exciting to you, but maybe you haven’t tried calculating very many non-
zero Bernoulli numerators. They increase very quickly into huge integers! Using the von Staudt-
Clausen Theorem, I need onlyn to do this.

Conjecture 1

The absolute values of all non-zero Bernoulli numerators are≡ {1 or 5} mod 6. I checked this
conjecture up toBernoulli2000 with the followingMaxima program. It found no exceptions:

float(true)$ n:0$ for p:1 thru 1000 step 0 do

(n:n+2, b:bern(n), m:mod(abs(num(b)),6), if (m=5 or m=1) then p:p+1 else

(print("exception at ", n, " abs val mod 6 = ", m), p:4000))$

print("checked to Bern_", n)$

Conjecture 2

Those numerators with absolute values≡ 1 mod 6 have a sequence of denominators different from
the sequence of the denominators of numerators having absolute values≡ 5 mod 6. Neither of
these two sequences of denominators have any elements in common. I wrote theseMaxima pro-
grams to help me make Conjecture 2:

float(true)$ n:0$ c:6$ for p:1 thru 1000 step 0 do

(n:n+2, b:bern(n), m:mod(abs(num(b)),c),

if m=1 then (d:denom(b), print(p,", ",d), p:p+1))$

1

Kaarhus Splitting the Bernoulli Numbers

float(true)$ n:0$ c:6$ for p:1 thru 1000 step 0 do

(n:n+2, b:bern(n), m:mod(abs(num(b)),c),

if m=5 then (d:denom(b), print(p,", ",d), p:p+1))$

I saved thoseMaxima lists as bfiles. Later I used a different program to make bfiles containing 10k
elements. To check the bfiles to see if they share any elements, I wrote a program that makes lists
of just the denominators. It removes duplicates from those lists, compares the lists, and returns
their intersection. This is my program’s output:

@pop1 has 10000 elements. @pop2 has 10000 elements

@uni has 4363 unique elements. @voj has 6049 unique elements

Shared elements of @uni and @voj are:

0 elements shared

There are no shared elements. With these observations, we see that all non-zero Bernoulli Numbers
≥ Bernoulli2 fall into one or the other of two unique Populations:

• Population I has numerators whose absolute values are≡ 1 mod 6, and denominators of
Population I only.

• Population II has numerators whose absolute values are≡ 5 mod 6, and denominators of
Population II only.

If |numerator| ≡ 1 mod 6, it is a Population I Bernoulli Number.
If |numerator| ≡ 5 mod 6, it is Population II. The first 10k Population I Bernoulli Numbers are
about 1.522 times more abundant than the first 10k of Population II.
To obtain the first 10k Population I numbers, you need to go toBernoulli33136.
To obtain the first 10k Population II numbers, you need to go toBernoulli50448.
However, in the first 10k instances of each Population,
Population I has 4363unique denominators.
Population II has 6049unique denominators.

To download the first 10,000 Population I denominators:pop1-deno.txt.
To download the first 10,000 Population II denominators:pop2-deno.txt.
To download 4,363 unique Population I denominators:pop1-uni.txt.
To download 6,049 unique Population II denominators:pop2-uni.txt.
To download 10,000n producing Population I numbers:pop1-n.txt.
To download 10,000n producing Population II numbers:pop2-n.txt.
OEIS has now published 2 sequences ofn that produce these Populations:A233578andA233579.

The table below lists the first 26 denominators byn and population. It shows that for each evenn,
the denominator is either Pop I or Pop II:

å 2

http://www.christaboveme.com/bern/pop1-deno.txt
http://www.christaboveme.com/bern/pop2-deno.txt
http://www.christaboveme.com/bern/pop1-uni.txt
http://www.christaboveme.com/bern/pop2-uni.txt
http://www.christaboveme.com/bern/pop1-n.txt
http://www.christaboveme.com/bern/pop2-n.txt
http://oeis.org/A233578
http://oeis.org/A233579

Kaarhus Splitting the Bernoulli Numbers

n and Denominator
n Pop I Pop II
2 6
4 30
6 42
8 30
10 66
12 2730
14 6
16 510
18 798
20 330
22 138
24 2730
26 6
28 870
30 14322
32 510
34 6
36 1919190
38 6
40 13530
42 1806
44 690
46 282
48 46410
50 66
52 1590

Because Bernoulli numerators become very large very rapidly, I want amethod of determining the
Population of a Bernoulli Number, either fromn or from the denominator. I have not figured out
a method usingn. But I did figure out a method using the denominator. von Staudt and Clausen
figured out how to obtain denominators fromn. So, using their theorem, I actually can determine
the Population of a Bernoulli Number, just fromn (as we shall see). First, we need a theorem and
an intermediate conjecture:

Theorem 1. All Bernoulli denominators ≥ 6 are divisible by 6.

Proof. This is already proven. See N.J.A. Sloane’s entries underformula and references in
A090801. Sloane wrote, “In particular, all numbers [denominators] after the firsttwo (which
are the denominators ofB0 and B1) are divisible by 6.” Since the first denominator of 6 (the
denominator ofB2) is after the first two, all Bernoulli denominators≥ 6 are divisible by 6. �

å 3

http://oeis.org/A090801

Kaarhus Splitting the Bernoulli Numbers

Conjecture 3:

All Bernoulli denominators≥ 6, divided by 6, are≡ {1,5,7,11,13,17,19,23,25 or 29} mod 30.

Program 3

I wrote thisMaxima program to check Conjecture 3. It uses the von Staudt-Clausen Theorem to
generate Bernoulli denominators, divides each by 6, then checks eachquotient mod 30:

load(basic)$ i:[6]$ n:0$ for t:1 thru 500 step 0 do (n:n+2,

for p:3 while p-1<=n step 0 do (p:next_prime(p), if mod(n, p-1)=0 then

push(p, i)), a:(product(i[k], k, 1, length(i))), q:a/6, r:mod(q,30),

if (r=1 or r=5 or r=7 or r=11 or r=13 or r=17 or r=19

or r=23 or r=25 or r=29) then (t:t+1, i:[6]) else

(print("exception at ", q, " mod 30 =", r), t:4000))$

print("# Checked to Bernoulli_", n)$

The above program checked toBernoulli1000, and found no exceptions to Conjecture 3.

Conjecture 4:

If the Bernoulli denominator, divided by 6, is≡ {1,5,7,13, or 19} mod 30, then the Bernoulli
Number is Population I, and the abs. value of the numerator is≡ 1 mod 6.

Conjecture 5:

If the Bernoulli denominator, divided by 6, is≡ {11,17,23,25 or 29} mod 30, then the Bernoulli
Number is Population II, and the abs. value of the numerator is≡ 5 mod 6.

Programs 4 and 5

Conjectures 4 and 5 actually give you the residue mod 6 of the abs. value ofthe Bernoulli numerator
from its denominator. Never has been done before! These are theMaxima programs I wrote for
Conjectures 4 and 5:

float(true)$ n:0$ for p:0 thru 500 step 0 do

(n:n+2, b:bern(n), m:mod(abs(num(b)),6), if m=1 then

(d:denom(b), q:d/6, x:mod(q,30),

if (x=1 or x=5 or x=7 or x=13 or x=19) then p:p+1 else

print("exception at ", q, " mod 30 =",x)))$ print("Checked to B_",n)$

float(true)$ n:0$ for p:0 thru 500 step 0 do

(n:n+2, b:bern(n), m:mod(abs(num(b)),6), if m=5 then

å 4

Kaarhus Splitting the Bernoulli Numbers

(d:denom(b), q:d/6, x:mod(q,30),

if (x=11 or x=17 or x=23 or x=25 or x=29) then p:p+1 else

print("exception at ", q, " mod 30 =",x)))$ print("Checked to B_",n)$

There are no exceptions when the above programs are run. That meansConjecture 4 is true up to at
leastBernoulli1730, and Conjecture 5 is true up to at leastBernoulli2458. The above two programs
generate absolute values of Bernoulli numerators, and obtain their residues mod 6. However, if
Conjectures 4 and 5 are true, then you don’t need to generate numerators. You can use von Staudt-
Clausen to generate just the denominators, and obtain the residues mod 6 of the absolute values of
the numerators from the denominators! TheMaxima program below takes as input nothing but
n. It uses von Staudt-Clausen, and returns the denominator ofBernoullin, the residue mod 6 of the
absolute value of the numerator ofBernoullin, and the sign of the numerator ofBernoullin :

Program 6

float(true)$ load(basic)$ i:[6]$ n:64$ if oddp(n) then

(s:n+1, print("ERROR: ",n, " is odd. Using ",s, " instead."), n:s)$

for p:3 while p-1<=n do

(p:next_prime(p), if mod(n, p-1)=0 then push(p,i))$

j:length(i)$ d:product(i[k], k, 1, j)$

print("denominator of Bern_", n," = ",d)$

q:d/6$ x:mod(q,30)$ if (x=1 or x=5 or x=7 or x=13 or x=19) then

print("abs val of numerator of Bern_", n, " is cong. to 1 mod 6.") else

print("abs val of numerator of Bern_", n, " is cong. to 5 mod 6.")$

v:mod(n,4)$ if v=0 then

print("numerator of Bern_", n, " is negative.") else

print("numerator of Bern_", n, " is positive.")$

If you enter an oddn; the program increments it so it’s even. The method of determining the sign
of the numerator is already known; I didn’t need a conjecture for it: For evenn ≥ 2, if n ≡ 0 mod 4,
then the numerator ofBernoullin is negative. Otherwise, it is positive.

Copyright

Splitting the Bernoulli Numbers
Copyright© 2013 Mike Kaarhus
All Rights Reserved

å 5

