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Abstract

This article makes three new Twin Prime conjectures, develops one of them, and
introduces a newly-discovered type of prime number, which I have provisionally named
the ghost primes.

1 Introduction
Some 2300 years ago, Euclid proved that the prime numbers are infinitely many. Today,
some number theorists are trying to prove or disprove the Twin Prime Conjecture (TPC).
Its general form says simply that prime twins are infinitely many. According to math
professor Daniel. A. Goldston, the first person known to make the TPC was de Polignac
in 1849, who “conjectured that there will be infinitely many prime pairs with any given
even difference” (Goldston [1]). I, of course, want to prove it. Here I introduce my first
three twin prime conjectures. All are more specific than the general form of the TPC.

I have not learnt probability or number theory, and am not very knowledgeable in
calculus. I make no attempt to prove the Strong Conjecture, or anything that sophisticated.
My conjectures and analyses are elementary and algebraic.

Prerequisites: my readers need to understand:

• Algebra and modular arithmetic. If you don’t understand modular arithmetic, you
can read this: A Primer on Modular Arithmetic

• Twin prime pairs are primes of the form (p, p + 2). The term twin usually refers
to just 1 integer, and twins means two or more. To avoid confusion I use the term
prime pair, which means primes (p, p+ 2). For instance, (29, 31) is a prime pair, as
is (41, 43).

• At the center of each prime pair resides a central composite (a non-prime integer).
The central composite of (29, 31) is 30. The central composite of (41, 43) is 42. If
you find a central composite, you find a prime pair.

• (All central composites ≥ 6) ≡ 0 (mod 6).

• b# means b primorial, which is the product of all the primes up to and including b.
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KAARHUS TWIN PRIME CONJECTURES 1, 2 and 3

1.1 Variables

It is conventional to refer to a prime pair as (p, p+ 2), and to declare no variable for the
central composite. Here, however, I refer often to p+ 2. So I devised this convention:

r = p+ 2
(p, r) is identical to (p, p+ 2)
q = the central composite p+1 of the prime pair (p, r)
Hence, from the prime pair (p, p+ 2), I recognize the sequence (p, q, r)

I use b exclusively for the primorial b#. I use b instead of p here, because I reserve p for the
first twin of a twin prime pair. The type of primorial I have in mind throughout is bn#,
where n = 0, 1, 2, 3, 4 . . . I omit the subscript throughout. At OEIS, this type of primorial
is A002110.
I use g for a ghost prime (introduced below).
I use y for a g candidate.
I use z for an r candidate.

2 Conjectures 1, 2 and 3
Conjecture 1. Between every b and b#

2 (where b is prime) there exists at least one prime
pair (p, r), such that

b ≤ p < r <
b#
2 (b ≥ 5, p ≥ 5).

If Conjecture 1 is true, then the prime pairs are infinite, because as b and the half-
primorials go to infinity, there exists at least one new and larger prime pair in each half-
primorial. This conjecture seems at first to not cover the entire domain of the Naturals.
However, for whatever large integer or prime pair you invoke, I can, with this conjecture
invoke an even larger prime pair. For instance, if you say, “I’m thinking of the prime pair
starting at 1000000007. How do you obtain one larger than that?” Simple:

There exists at least one prime pair (p, r) such that:

1000000009 ≤ p < r <
1000000009#

2 .

The above is true and verified by the existence of many prime pairs, the first of which is
(1000000409, 1000000411). Plenty of prime pairs can be found between each b and b#

2 .
Conjecture 1 lends some intuitive form, and some generous bounds to the General Con-
jecture. I have found no instance in which Conjecture 1 is false, but I have not proven it
true.

I tried thinking of b#
2 as a sum, rather than a product:

b#
2 = (some even integer) + r, where r is the second twin of a prime pair.

å 3
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KAARHUS TWIN PRIME CONJECTURES 1, 2 and 3

When I considered the even integer, I discovered something odd:

The even integer = 4g, where g is prime.

I call g a ghost prime of the prime pair (p, r). I call it that because it is associated with
the prime pair, but not in an apparent or easily detectable way.

The empirical evidence suggests that each r ≥ 7 sums with at least one 4g to equal
some primorial over 2. I find no r that does not sum with some 4g to equal some primorial
over 2. Their relation is as follows:

(1) b#
2 = 4g + r (where b ≤ p < r <

b#
2 , b ≥ 5, p ≥ 5, and g and b are prime).

Since r = p+ 2, the above can be rearranged to:
b#
2 = 4g + p+ 2

p = b#
2 − 4g − 2, and

r = b#
2 − 4g

Definition 1. I define r, g, and b to be linked to each other, if r = b#
2 − 4g.

For instance, These statements are equivalent:
g and r are linked. g and q + 1 are linked. g and p+ 2 are linked.

Definition 2. I define p, g, and b to be linked to each other, if p = b#
2 − 4g − 2.

Definition 3. I define a set of linked {r, g, b} or {p, g, b} to be a linked set.
Definition 4. I define a linked set to be unique if no other linked set is identical to it.
Conjecture 2. For each prime pair (p, r) (p ≥ 5), the twin prime p is in at least one
unique linked set {p, g, b}, and the twin prime r is in at least one unique linked set {r, g, b},
where the same g and the same b are distributed to both linked sets, and where

The prime pair (p, r) =
(
b#
2 − 4g − 2, b#

2 − 4g
) (

the same restrictions as in (1)
)

Conjecture 3. The g are infinitely many, therefore, the p, the r, and the (p, r) are in-
finitely many.
For some reason, it remains difficult, even for professional mathematicians, to prove that
the sequence of the p, or the q, or the r, or the (p, r) is infinite. As an alternative, then,
it might eventually be shown that the (p, r) are infinitely many, by showing that the (p, r)
are linked to the g, and that the g are infinitely many.

I have not proven that the sequence of the g is infinite. So I set aside Conjecture 3 for
now. The rest of this paper will provide empirical evidence for Conjecture 2. I will also
make bailing-wire analyses on the nature of the g.
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3 Evidence That Each r Is In a Unique Linked Set {r, g, b}

3.1 123 Ghost Primes Linked to the 75 Smallest r > 5

For all the prime pairs I have checked, I find that each r is in a unique linked set {r, g, b}.
Listed below are 123 linked sets from the first 75 smallest p ≥ 5 – from (5, 7) to (2711, 2713).
The [n] counts the prime pairs ≥ 5. The linking of the g to the (p, r) is not 1-to-1; some
(p, r) are linked to more than one g. To list one of those, I use a lower case letter instead
of incrementing [n]. I list all the g linked to each (p, r), only up to the pair (281, 283). To
download a text file containing the numbers below with full-length g, click here.

Linked Sets in the First 75 Prime Pairs ≥ 5
[n] (p, r) g b#
[1] (5, 7) 2 5#
[2] (11, 13) 23 7#
[3] (17, 19) 63809 17#
[4] (29, 31) 281 11#
[5] (41, 43) 63803 17#
[6] (59, 61) 11 7#
[b] (59, 61) ≈ 7.68612228235614 · 1016 47#
[7] (71, 73) 1212443 19#
[b] (71, 73) ≈ 4.07364480964875 · 1018 53#
[8] (101, 103) 263 11#
[b] (101, 103) ≈ 1.46610476699258 · 1022 61#
[9] (107, 109) ≈ 4.02205595917584 · 1029 79#

[10] (137, 139) 3719 13#
[b] (137, 139) 808711619 29#
[c] (137, 139) ≈ 3.95125683005220 · 1045 113#

[11] (149, 151) 251 11#
[12] (179, 181) ≈ 7.68612228235613 · 1016 47#
[13] (191, 193) 38031282940853 41#

[b] (191, 193) ≈ 3.72744909724140 · 1069 179#
[14] (197, 199) 239 11#

[b] (197, 199) 27886559 23#
[c] (197, 199) ≈ 3.33830644611594 · 1031 83#
[d] (197, 199) ≈ 9.00597720377625 · 1051 137#

[15] (227, 229) ≈ 6.74668286600693 · 1071 181#
[16] (239, 241) 1212401 19#

[b] (239, 241) ≈ 3.72744909724140 · 1069 179#
[17] (269, 271) 27886541 23#

[b] (269, 271) ≈ 2.97109273704319 · 1033 89#

å 5
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Linked Sets in the First 75 Prime Pairs ≥ 5 (cont.)
[n] (p, r) g b#
[c] (269, 271) ≈ 3.20797014699374 · 1041 107#
[d] (269, 271) ≈ 2.81649418739788 · 1058 151#
[e] (269, 271) ≈ 2.06455588073781 · 10102 257#

[18] (281, 283) 63743 17#
[b] (281, 283) ≈ 1.63534516645868 · 1015 43#
[c] (281, 283) ≈ 2.91077955448121 · 1037 101#
[d] (281, 283) ≈ 3.95125683005220 · 1045 113#
[e] (281, 283) ≈ 2.48702970489613 · 1076 193#
[f ] (281, 283) ≈ 5.55654523159023 · 1092 233#

Below are listed all the g ≤ 109#
2 − r, or the first g:

[19] (311, 313) 927592266773 37#
[20] (347, 349) ≈ 7.68612228235613 · 1016 47#

[b] (347, 349) ≈ 9.82290193885033 · 1023 67#
[21] (419, 421) 25070061161 31#
[22] (431, 433) 927592266743 37#
[23] (461, 463) 173 11#

[b] (461, 463) ≈ 1.46610476699258 · 1022 61#
[c] (461, 463) ≈ 2.88195995493189 · 1035 97#
[d] (461, 463) ≈ 3.20797014699374 · 1041 107#

[24] (521, 523) 3623 13#
[25] (569, 571) 63671 17#

[b] (569, 571) ≈ 6.97426037658373 · 1025 71#
[26] (599, 601) ≈ 1.86522793867409 · 1056 149#
[27] (617, 619) 63659 17#

[b] (617, 619) 808711499 29#
[c] (617, 619) ≈ 2.40345043769276 · 1020 59#

[28] (641, 643) 3593 13#
[29] (659, 661) ≈ 9.82290193885033 · 1023 67#
[30] (809, 811) 63611 17#

[b] (809, 811) ≈ 3.49668746022318 · 1043 109#
[31] (821, 823) 83 11#
[32] (827, 829) ≈ 1.52052822216147 · 10147 367#
[33] (857, 859) 3539 13#

[b] (857, 859) 63599 17#
[34] (881, 883) 3533 13#

[b] (881, 883) 808711433 29#
[35] (1019, 1021) ≈ 9.82290193885033 · 1023 67#
[36] (1031, 1033) 38031282940643 41#
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Linked Sets in the First 75 Prime Pairs ≥ 5 (cont.)
Below are listed all the g ≤ 109#

2 − r, or the first g:
[n] (p, r) g b#
[b] (1031, 1033) ≈ 4.07364480964875 · 1018 53#

[37] (1049, 1051) 3491 13#
[b] (1049, 1051) 808711391 29#

[38] (1061, 1063) 23 11#
[b] (1061, 1063) 27886343 23#
[c] (1061, 1063) ≈ 2.88195995493189 · 1035 97#

[39] (1091, 1093) ≈ 9.82290193885033 · 1023 67#
[40] (1151, 1153) 1212173 19#
[41] (1229, 1231) 27886301 23#

[b] (1229, 1231) ≈ 2.88195995493189 · 1035 97#
[42] (1277, 1279) ≈ 4.89944851864539 · 1078 197#
[43] (1289, 1291) ≈ 3.49668746022318 · 1043 109#
[44] (1301, 1303) 27886283 23#

[b] (1301, 1303) ≈ 2.88195995493189 · 1035 97#
[45] (1319, 1321) ≈ 7.20769027496993 · 1062 163#
[46] (1427, 1429) ≈ 2.43917449943822 · 10124 311#
[47] (1451, 1453) 25070060903 31#

[b] (1451, 1453) ≈ 2.99810294111565 · 1039 103#
[48] (1481, 1483) 63443 17#

[b] (1481, 1483) 808711283 29#
[c] (1481, 1483) ≈ 5.09121007490612 · 1027 73#

[59] (1487, 1489) ≈ 4.07364480964875 · 1018 53#
[50] (1607, 1609) 927592266449 37#

[b] (1607, 1609) 38031282940499 41#
[c] (1607, 1609) ≈ 4.07364480964875 · 1018 53#

[51] (1619, 1621) ≈ 1.25183083132489 · 1054 139#
[52] (1667, 1669) 25070060849 31#

[b] (1667, 1669) ≈ 4.02205595917584 · 1029 79#
[53] (1697, 1699) 3329 13#

[b] (1697, 1699) 63389 17#
[c] (1697, 1699) ≈ 5.09121007490612 · 1027 73#

[54] (1721, 1723) 3323 13#
[b] (1721, 1723) 808711223 29#
[c] (1721, 1723) ≈ 1.63534516645832 · 1015 43#
[d] (1721, 1723) ≈ 6.97426037658373 · 1025 71#
[e] (1721, 1723) ≈ 2.91077955448121 · 1037 101#
[f ] (1721, 1723) ≈ 3.49668746022318 · 1043 109#
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Linked Sets in the First 75 Prime Pairs ≥ 5 (cont.)
For the pairs below, only the first g is listed:

[n] (p, r) g b#
[55] (1787, 1789) ≈ 4.02205595917584 · 1029 79#
[56] (1871, 1873) ≈ 5.99411350659951 · 10183 449#
[57] (1877, 1879) ≈ 2.88195995493189 · 1035 97#
[58] (1931, 1933) ≈ 9.82290193885033 · 1023 67#
[59] (1949, 1951) ≈ 2.88195995493189 · 1035 97#
[60] (1997, 1999) ≈ 3.33830644611594 · 1031 83#
[61] (2027, 2029) ≈ 5.01809617416629 · 1047 127#
[62] (2081, 2083) 808711133 29#
[63] (2087, 2089) 38031282940379 41#
[64] (2111, 2113) 1211933 19#
[65] (2129, 2131) 3221 13#
[66] (2141, 2143) ≈ 3.33830644611594 · 1031 83#
[67] (2237, 2239) ≈ 3.20797014699374 · 1041 107#
[68] (2267, 2269) ≈ 7.68612228235608 · 1016 47#
[69] (2309, 2311) ≈ 1.46610476699258 · 1022 61#
[70] (2381, 2383) ≈ 1.20368427591997 · 1065 167#
[71] (2549, 2551) ≈ 3.33830644611594 · 1031 83#
[72] (2591, 2593) 1211813 19#
[73] (2657, 2659) 3089 13#
[74] (2697, 2689) 1211789 19#
[75] (2711, 2713) ≈ 1.86522793867409 · 1056 149#

3.2 g and b Linked to Eight Larger r

I also selected at random a sequence of eight larger prime pairs, and calculated the first g
for them. These eight pairs are from (433000571, 433000573) to (433002671, 433002673):

Linked Sets for 8 larger r
For the r below, only the first g is listed:
r g b#

433000573 ≈ 7.68612227153112 · 1016 47#
433000651 ≈ 5.09121007490612 · 1027 73#
433001071 ≈ 3.33830644611594 · 1031 83#
433001209 ≈ 4.07364480954050 · 1018 53#
433001551 ≈ 3.20797014699374 · 1041 107#
433001689 ≈ 3.72744909724140 · 1069 179#
433001971 700461161 29#
433002673 ≈ 3.72744909724140 · 1069 179#
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To download a text file containing the above with full-length g, click here.

3.3 The Smallest Ghost Primes

Of particular interest to number theorists is the beginning of the sequence of the g, that
is, the smallest g. If the sum of the reciprocals of the g diverges, then the sequence of
the g is infinite. However, you cannot determine convergence or divergence without the
beginning of the sequence (as the beginning reciprocals are the largest). The above lists
go from smaller to larger r, but the linked g do not increase as the r increase. To the
contrary, some of the g decrease as the r increase: if you keep b#

2 constant, and increase
r, g must necessarily decrease. Some of the g listed above are among the smallest g, but
many of the smallest g are not listed above.

Previously, I published here a list of what I thought were the 284 smallest g. I then sub-
mitted them to OEIS (The Online Encyclopedia of Integer Sequences). Charles Greathouse,
(OEIS Editor-In-Chief) detected numerous errors and omissions in the numbers I submit-
ted. So he wrote a PARI script (Greathouse [2]) to generate small g, and made a correct
table of the 204 smallest g (Greathouse [3]). They can be found at:

PARI script by Charles Greathouse
Table of n, a(n) for n = 1..204 by Charles Greathouse

My r-g-b relation (Kaarhus [4]) is good, and OEIS found no exception to Conjecture 2 :

my sequence (A218046) (corrected by Charles Greathouse) at OEIS

The first 8 elements of the sequence of the g are:

{2, 11, 23, 83, 113, 131, 173, 191}

Smallest g Christmas Tree
p, r g b#

(5, 7) 2 5#
(59, 61) 11 7#
(11, 13) 23 7#

(821, 823) 83 11#
(14561, 14563) 113 13#

(254729, 254731) 131 17#
(461, 463) 173 11#

(14249, 14251) 191 13#

Convergence neither proves nor disproves that a sequence is finite. Divergence proves
the sequence infinite. But the reciprocal sums of many infinite sequences converge. For
instance, the reciprocal sums of the squares converge, even though the squares are infinitely
many.
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4 Bailing-wire Analyses

4.1 Theorem: g+1 is congruent to 0 (mod 6)

I observe that each (g + 1) ≡ 0 (mod 6). Each g + 1 differs from each q, and from each
b#
2 + 3 by different multiples of 6. I observe also that each g differs from each other g by
some integral multiple (≥ 1) of 6. I prove this with a sieve. But first, some preliminary
stuff.

This step is simple but essential. I did not see this for a long time: Start with

b#
2 = 4g + 1 + q, Add 3 to both sides:

b#
2 + 3 = 4g + 4 + q

b#
2 + 3 = 4(g + 1) + q

That makes (the left side ) ≡ 0 (mod 6), and produces a g+1 element. I want one, because
g is a prime such that (g+ 1) mod 6 = 0. I will demonstrate that here. Warning! This will
be neither elegant nor concise!

Consider b#2 = 4g + 1 + q.

b# mod 6 = 0, and q mod 6 = 0 (well-known to number theorists).
b#
2 mod 3 = 0, and q mod 3 = 0, which means

4g + 1 mod 3 = 0 (since (all the other terms) mod 3 = 0). However,
b#
2 mod 6 6= 0 and 4g + 1 mod 6 6= 0. Why is that?

b#
2 is not congruent to 0 (mod 6), because b#

2 has no factor of 2, or of 6. It has no factor
of 2, because when you divide any primorial by 2, you remove its one and only factor of
2. b#

2 has no factor of 6, because 6 is not prime, and you can’t make a product of 6 from
primes unless you have a 2.

Why is (4g + 1) mod 6 6= 0? g is by definition prime, which means:

g ends in one of these digits: {1, 3, 7, 9}.
4g then must end {4, 2, 8, 6}. And
4g + 1 must end {5, 3, 9, 7}. However,
(any integer) ≡ 0 (mod 6) must end {0, 2, 4, 6, 8}.
In short, 4g + 1 mod 6 6= 0 because 4g + 1 never ends {0, 2, 4, 6, 8}.

å 10
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So far, I conclude that:

b#
2 mod 3 = 0,

b#
2 mod 6 6= 0.

(4g + 1) mod 3 = 0, and
(4g + 1) mod 6 6= 0.

Now consider b#
2 + 3 = 4(g + 1) + q. It can be shown that, for any integer s,

if s mod 3 = 0, and s mod 6 6= 0, then (s+ 3) mod 6 = 0.

For instance,

9 mod 6 6= 0, but (9 + 3) mod 6 = 0.
15 mod 6 6= 0, but (15 + 3) mod 6 = 0. And so forth. And:

4g + 1 + 3 = 4(g + 1). Therefore,(
b#
2 + 3

)
mod 6 = 0, and

4(g + 1) mod 6 = 0.

OK. That proves 4(g + 1) ≡ 0 (mod 6). What about simply

(g + 1) ≡ 0 (mod 6)? How do I prove that?

I prove that by using a sieve:

Theorem 1. (g+1) ≡ 0 (mod 6)

Proof. Make a vertical list or column of all the integral multiples of 6 from 6 to 120. Call
these integers s, such that s mod 6 = 0. The column has 20 integers. 4(g + 1) is an s-like
integer, in that 4(g + 1) mod 6 = 0 (as was already shown). Alongside the first column,
make a second column whose values are s/4. Ten of them will not be integers. Cross
them out, leaving only the 10 integral s/4 values. For each integer remaining in the second
column, observe that the adjacent s value in the first column is a multiple of 12. Since

4(g + 1)
4 is an integer, it must be that

4(g + 1) mod 12 = 0. That is,
4(g + 1) is analogous to only those s wherein s mod 12 = 0.

Also, g is prime, so g is odd, which means g + 1 is even, which means 4(g + 1) is even.
Good. Cross out all the odd integers in the second column. Only five integers remain in
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the second column, and they are all even. For each of them, observe that the adjacent s
value in the first column is a multiple of 24. Since

4(g + 1)
4 is an even integer, it must be that

4(g + 1) mod 24 = 0. That is,
4(g + 1) is analogous to only those s wherein s mod 24 = 0.

Modular Sieve
s s/4 s/4 = even integer? s ≡ 0 (mod 24)? s/4 ≡ 0 (mod 6)?
6 1.5 n n n
12 3 n n n
18 4.5 n n n
24 6 yes yes yes
30 7.5 n n n
36 9 n n n
42 10.5 n n n
48 12 yes yes yes
54 13.5 n n n
60 15 n n n
66 16.5 n n n
72 18 yes yes yes
78 19.5 n n n
84 21 n n n
90 22.5 n n n
96 24 yes yes yes
102 25.5 n n n
108 27 n n n
114 28.5 n n n
120 30 yes yes yes

If s mod 24 = 0, then s

4 mod 6 = 0.

From the above, I see that:

4(g + 1) mod 24 = 0 (just like s mod 24). Therefore,(4(g + 1)
4

)
mod 6 = 0

(
just like s4 mod 6

)
. And since

4(g + 1)
4 = g + 1,

(g + 1) mod 6 = 0.

å 12
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These facts can be integrated into a script that searches for g. This also means,

g ≡ 5 (mod 6) (This is a p-like attribute of g)

Each g differs from each other g by an integral multiple of 6, and
Each g differs from each p by an integral multiple of 6:

(g2 − g1) ≡ 0 (mod 6) (g > 2).∣∣g − p∣∣ ≡ 0 (mod 6) (g > 2).

The smallest two g that differ by only 6 are (233, 239).

4.2 Theorem: Each linked g and r end in the same digit.

I also find that all g greater than 2 must end in the same digit as the r to which it is
linked. The r are prime, so they must end in an odd digit other than 5. Specifically, the r
can never end in 7, because if they could, then the p could end in 5 (but the p have to be
prime). So, the r must end {1, 3, or 9}. Now let’s figure out how the g must end.

Theorem 2. Each g ends in the same 1, 3, or 9 as the r to which it is linked.

Proof. The evaluations of both sides must end in the same digit:

b#
2 = 4g + r, and

b#
2 (b ≥ 5) always ends in 5, which means(2)

4g + r must end in 5. However, r ends {1, 3, 9}.

For a very simple proof of (2), click here: C.
From the above, the following deductions can be made:
There are three possible endings for r, so there are three cases to consider for 4g and g:

If r ends in 1, 4g must end in 4, and g ends in 1 (because 1 · 4 ends in 4).
If r ends in 3, 4g must end in 2, and g ends in 3 (because 3 · 4 ends in 2).
If r ends in 9, 4g must end in 6, and g ends in 9 (because 9 · 4 ends in 6).

g cannot end in 7, because 4g must end in {4, 2, 6}, but 4 · 7 ends in 8. Therefore, each g
ends in the same 1, 3, or 9 as the r to which it is linked.

As a result of the fact that each linked g and r end in the same digit,

If g and r are linked, then
∣∣g − r∣∣ ≡ 0 (mod 10)

These facts can also make it easier to search for g.
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4.3 The g are somewhat p-like, and somewhat r-like

Since

(g + 1) mod 6 = 0,
(g − 1) mod 6 = 4.

That is apparent by considering any integer congruent to 0 (mod 6), and subtracting 2
from it. For example,

(12− 2) mod 6 = 4
(18− 2) mod 6 = 4, and so on.

This means g − 1 is never a q (g − 1 is never in the equivalence class of any q). Thus it
is true that g is never the larger twin of a prime pair. However, g + 1 can be a q. The g
ending in {1, 9} can be the smaller twin of a prime pair. But the g ending in 3 cannot. So,
even though each g ends with the same {1, 3, 9} as the r to which it is linked, the g are
not otherwise like the r.

4.4 Theorem: If b = r, then y has a factor of r

For any one b#
2 , only one g is linked to some r1. This is a consequence of simple arithmetic:

if you change r, you must also find a different 4g to sum to the same b#
2 . For some different

b#
2 , a different g can be linked to the same r1. So, when searching for g linked to a given
r, how far do you have to keep incrementing the primorial, until you are sure there are no
more g linked to it?

Theorem 3. Where
y = b#

8 −
r

4
If b ≥ r, and y is integral, then y has a factor of r. You need increment the primorial no
further than p#. The number of different g linked any one r is finite.

Proof. Multiply the second term by 2/2:

y = b#
8 −

2r
8

If b ≥ r, then r is necessarily divides b#. Expand the primorial and rewrite:

(3) y = (2 · 3 · 5 · . . . · p · r)− (2 · r)
8

In some cases, the y in (3) is an integer. But whether or not y is an integer, r divides y.
That’s because both terms in the numerator have a factor of r. To check, divide y by r:

y

r
= (2 · 3 · 5 · . . . · p · r)− (2 · r)

8 · r
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y

r
= (2 · 3 · 5 · . . . · p)− 2

8
y

r
= p#− 2

8
Therefore, if r is a factor of b#, then, if b#

8 −
r
4 is integral, it has a factor of r. To find

more g you can increment the primorial only until b = p; The number of different g linked
any one r is finite.

Corollary 1. Regarding the above, y is not an integer for every r#, but, whether or not
y is an integer, y has the same fractional part as y/r:

r#− 2r
8 and p#− 2

8 have the same fractional parts

Dividing y by r does not change the fractional part of y. If y is an integer, dividing y by r
does not change its fractional part of 0.

The above proof and corollary might be more easily seen by example.

Example 1. Let’s say you want to find ghost primes linked to the prime pair (17, 19). The
central composite q is 18, which is less than all half-primorials ≥ 7#

2 . Of those, one needs
to check only {7#

2 ,
11#

2 ,
13#

2 ,
17#

2

}
That’s because of the restriction that b ≤ p. But who follows rules? Let’s see what happens
if we let b = 19, and search for g in 19#

2 . Will we find one there?

19#
8 − 19

4 = 71316.5 (not integral). However, 19 divides 71316.5:

71316.5
19 = 3753.5

Dividing 71316.5 by 19 causes no change in the its fractional part.
Let’s try b = 23, and search for g in 23#

2 . Will we find one there? Remember, r = 19,
so b (which is 23) has gone beyond r:

Let y = 23#
8 − 2 · 19

8 be represented as

y = (2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23)− (2 · 19)
8(4)

Whether or not the y in (4) is an integer, 19 necessarily divides y. To check, divide y by
19:

y

19 = (2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23)− (2 · 19)
8 · 19
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y

19 = (2 · 3 · 5 · 7 · 11 · 13 · 17 · 23)− 2
8

y

19 = 11741730− 2
8

y

19 = 1467716

For the prime pair (17, 19), if r is a factor of b#, then all integral y will have a factor of
19, no matter how much larger than 19 you make b. That’s because all primorials ≥ 19#
have a factor of 19, as does 2 · 19. That is, both terms of the numerator have a factor of
19. Keep b < 19, and y cannot have a factor of 19:

(5) y = (2 · 3 · 5 · 7 · 11 · 13 · 17)− (2 · 19)
8

19 cannot divide the y in (5). To check, divide y by 19:

y

19 = (2 · 3 · 5 · 7 · 11 · 13 · 17)− (2 · 19)
8 · 19

y

19 = (2 · 3 · 5 · 7 · 11 · 13 · 17)
8 · 19 − 2

8
y

19 = 3358.618421 . . .− 1
4

y

19 = 3358.368421 . . .

In the above 19 does not divide y. Neither does anything else, except 1 and y:

y = (2 · 3 · 5 · 7 · 11 · 13 · 17)− (2 · 19)
8

y = 510510− 38
8

y = 510472
8

y = 63809 (which is a ghost prime)

So, to find ghost primes for (17, 19), if you let b exceed 17, every integral y will have a
factor of 19, and every non-integral y is by definition not prime. You will therefore find
no g for (17, 19) if b > 17.

In general, to find ghost primes for (p, r), if you let b equal or exceed r, every integral
y will have a factor of r, and every non-integral y is by definition not prime. You will
therefore find no g for (p, r) if b ≥ r.
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4.5 Theorem: If b = (candidate g), z has a factor of (candidate g)

To search for the smallest g, you might start with a small primorial, and test candidates
for g; plug in some prime ending {1, 3, 9}, and congruent to 5 (mod 6). From those, obtain
a z (a candidate r), then check to see if both z and z − 2 are prime. If they are, then
(z− 2, z) is a prime pair, and the candidate g is a g. If either z or z− 2 are composite, you
might increment the primorial, and evaluate again. But how far out do you have to keep
incrementing the primorial?

As in the above example, there exists an upper limit for the primorial:

Theorem 4. Let gc be some prime candidate for g, and let z be a candidate for r

For z = b#
2 − 4gc

If b ≥ gc, then gc is a factor of b#, and gc will divide z.

Proof. Start with the equation for 2z. Let b = gc, and let f be the prime number (whatever
it is) that comes before gc.

2z = b#− 8gc

Expand b#, and check for a factor: divide 2z by gc

2z
gc

= (2 · 3 · 5 · . . . · f · gc)− 8gc

gc

2z
gc

= (2 · 3 · 5 · . . . · f)− 8
z

gc
= (3 · 5 · . . . · f)− 4

z

gc
= f#

2 − 4(6)

The right side of (6) is an integer for any prime f ; if b equals gc, then z has a factor of gc.
If you let b exceed gc, z will still have a factor of gc

2z
gc

= (2 · 3 · 5 · . . . · f · gc · b)− 8gc

gc

2z
gc

= (2 · 3 · 5 · . . . · f · b)− 8
z

gc
= (3 · 5 · . . . · f · b)− 4

z

gc
= b#

2gc
− 4(7)

The right side of (7) is an integer for any prime b > gc. Therefore, if b ≥ gc, then (since gc

is a factor of b#), z has a factor of gc
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You need increment only to the prime f , which is the prime just before the gc you are
checking. For example, if you are checking to see if 23 is one of the smallest g, how far do
you have to keep incrementing the primorial? No further than 19#. If you increment to
23# or larger, here’s what happens:

Example 2.

2z
23 = (2 · 3 · 5 · 7 · 11 · 13 · 17 · 19 · 23)− 8 · 23

23
2z
23 = (2 · 3 · 5 · 7 · 11 · 13 · 17 · 19)− 8
z

23 = (3 · 5 · 7 · 11 · 13 · 17 · 19)− 4

z

23 = 19#
2 − 4(8)

The right side of (8) is an integer; z has a factor of 23. Keep b < gc, and z will not have
a factor of gc. For instance, let b = 7:

2z
23 = (2 · 3 · 5 · 7)− 8 · 23

23

2z
23 = 210− 8 · 23

23
z

23 = 0.56521 . . .

In the above example, z has no factor of 23, nor any positive factors except 1 and z

2z = (2 · 3 · 5 · 7)− 8 · 23
2z = 210− 8 · 23
2z = 26
z = 13 (which is an r)

For finding and analyzing the number of the g, this is good news; it means that the
number of g linked to any one r is not arbitrary, nor can it become infinite. There are
only some finite number of g linked to any given r, no matter how large r becomes. No r
is linked to infinitely many g.

My restrictions actually reflect the reality that there is no use searching for g, or for
r in primorials ≥ r#. To obtain the full set of g you must obtain not just the first prime
evaluation, but all the prime evaluations. To do that, you must check for primality all
evaluations up to p#

2 for each r.
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4.6 A Reiteration of g

I am yet puzzled by the instance of a reiteration of g. Up until the prime pair (1061, 1063)
there were no reiterated g. But that pair repeated an earlier g

A Reiteration of g
pair g b#

(11, 13) 23 7#
(1061, 1063) 23 11#

I am not yet certain what caused the reiteration. But the two linked sets,
{13, 23, 7} and {1063, 23, 11} are still unique. Also, r = 1063 is part of at least two
other unique linked sets – each with different g. Such reiterations do not adversely affect
Conjecture 2. For the reciprocal sum of the g, however, I have made a rule: No repetitions
of g are permitted. My rule may sound arbitrary, but the existence of such repetitions
does not mean that, in the sequence of the g, there are duplicate g. Apparently, the same
g may appear more than once if linked to a different r, and to a different half-primorial. I
consider it correct to toss repetitions of g for the sum.

5 Conclusions
I have supplied empirical evidence that Conjecture 2 is true. If it is true, then, for each
(p, r), the p is in at least one unique linked set {p, g, b}, and the r is in at least one unique
linked set {r, g, b}, where the g and the b are the same in both sets. If Conjecture 2 is true,
and if the g are infinitely many, then Conjecture 3 is true.

I have found no exception to Conjecture 2, and it seems to me very improbable that an
exception exists. But I have not proven Conjecture 2. And Conjecture 3 cannot be proven
until Conjecture 2 is proven (or unless the TPC is proven in some other way).

There is an interesting mix of cases here (which are easily conflated):
Case 1: If each r > 5 is in a unique linked set {r, g, b}, and if the sequence of the g is

infinite, its infinitude would mean the r would be infinitely many.
Case 2: If each r > 5 is in a unique linked set {r, g, b}, and if the sequence of the g is

finite, its finiteness would mean the r would be finite.
Case 3: If some r > 5 is not in a unique linked set {r, g, b}, (there is no evidence that

this is the case), and if the sequence of the g is infinite, its infinitude would tell us nothing
about the infinitude of the r, or the lack thereof.

Case 4: If some r > 5 is not in a unique linked set {r, g, b}, and if the sequence of the
g is finite, its finiteness would tell us nothing about the infinitude of the r, or the lack
thereof.

I originally conflated the above, so that I considered just Case 1. So, I made only one
conjecture, where two are needed (This was pointed out to me by Greathouse).
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It also seemed to me at first that Conjecture 2 would imply the TPC by considering
only some prime pairs, but always finding larger ones. I observe, however, that Conjecture
2 doesn’t actually skip any prime pairs. If you use a large enough half-primorial, you can
obtain any prime pair, although the smaller pairs require smaller half-primorials.

There seems to be no end to the unique g. I have so far found only one instance where
a g is reiterated (I wrote about it here: 4.6). Even though at least one g is linked to more
than one r, this does not indicate that the g might be finite; the sequence of unique g is
more than twice as large as that of the r.

Specifically, there are 37 ghost primes linked to the prime pairs > 3 and ≤ 281. From
those stats, I calculated what might be called the ghost prime quotient. To calculate it,
you first need to look up or calculate π2(x), which is the number of prime pairs ≤ x. I use
π2(x)− 1 because (3, 5) is too small for a ghost prime to be linked to it; the linking of the
ghosts to the twin primes begins with (5, 7).

π2(281)− 1 = 18
the number of unique g linked to the first π2(281)− 1 prime pairs

π2(281)− 1 = 37
18

= 2.0555 . . .

I have not calculated all the ghosts for any pair beyond (281, 283), because it’s less work
to calculate just the first ghost (subsequent ghosts get very large very quickly). So the
present value of above quotient is exceeding rough. To make it more accurate, one would
need to obtain much more data. But it appears that the ghost prime quotient increases
with increasing π2(x).

Does knowledge of the g help prove the Twin Prime Conjecture? I don’t think it hurts.
It might be a new piece to the puzzle. It might help people see something about the twin
primes they didn’t see before.

If the TPC were false, I suppose the twin primes would (after some very large and
unspecified twin) cease. The primes are infinite, so they would necessarily continue, except
that no longer would any be found in the sequence (p, p + 2). With knowledge of the g,
must I amend that perception? Must I now say that, if the TPC were false, then not only
would the (p, p+ 2) cease, but also the g?

Yes. The g would not continue as defined, since the g are by definition linked to the r,
and there would be no more r. As defined, the g exist (and are more numerous than the
r). If indeed each r ≥ 7 is in a unique linked set {r, g, b}, then, if either the g sequence or
the r sequence is finite, the other sequence is also finite.

I like to think about the q becoming extinct after some huge integer, and what that
would imply for the sequence of the primes. After all, if someone can prove that the q either
cease or don’t cease, then the Twin Prime Conjecture would be settled. But there exists
no empirical evidence (save the convergence of their reciprocal sums, and their thinning
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out with increasing x) that the prime pairs might cease. So I have not thought about how
to redefine the g, were the q to become extinct, nor has that been the focus of this article.
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A Ghost Primes Are Not Like Chen Primes
Chen Primes are primes p, such that p + 2 is either prime, or is a product of 2 primes.
Some ghost primes > 2 are primes g, such that g + 18 is either prime, or is a product of 2
primes:

Small ghost primes + 18, and factors
g g + 18 factors Chen-like?
2 20 2 · 2 · 5 tossed

23 41 prime y
63809 63827 83 · 769 y

281 299 13 · 23 y
63803 63821 19 · 3359 y

11 29 prime y
1212443 1212461 29 · 41809 y

263 281 prime y
3719 3737 37 · 101 y
251 269 prime y

In 1973, Jing Run Chen proved that Chen Primes are infinite. If it were true that all ghost
primes were like Chen Primes (using p + 18 instead of p + 2), then ghost primes might
easily be proven infinite. My hopes were high until I checked a larger g:

402205595917584113487385569239 + 18 = 402205595917584113487385569257
402205595917584113487385569257 = 37 · 38543 · 282033612103003324112827

Not like Chen Primes for p+ 18. I have not checked beyond p+ 18.
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B Only Some g Are Sophie Germain
Rearrange b#

2 = 4g + r to:

b#
2 = 4g + 2 + p

b#
2 = 2(2g + 1) + p

In the above, the quantity (2g + 1) is the form of the larger prime of a Sophie Germain
couplet for the prime g. In some instances, g is in fact a Sophie Germain prime. But not
in every instance. 263, for instance, is a g, but (2 · 263 + 1) is composite.

C A Very Simple Theorem
Theorem 5. Each primorial ≥ 30, when divided by 2, will give a quotient that ends with
a 5.

Proof. Start with 5# = 30. To obtain each subsequent primorial, 30 must be multiplied
by each subsequent prime, and all of them are odd. Whenever an odd integer (such as 3)
is multiplied by an odd integer, the product will end with an odd digit. When 30 (or 3 ·10)
is multiplied by an odd integer, the product will be (3 · an odd integer · 10). The product
will end with an odd digit followed by a zero. When that product is in turn multiplied by
an odd integer, the new product will also end with an odd digit followed by a zero. And so
on for all such products. Therefore, all subsequent primorials will be integers ending with
an odd digit followed by a zero. But exactly which odd digits followed by a zero do the
primorials end in?

No primorial ends in 50, because, to get an integer that ends in 5, you must multiply an
integer ending in 5 by an integer ending in an odd digit. Similarly, to get an integer that
ends in 50, you must either multiply an integer ending in 50 by an integer ending in an
odd digit, or multiply an integer ending in 5 by an integer ending in an odd digit followed
by a zero. If 5# ended 50, then all subsequent primorials would end 50. Happily, 5# ends
30, and no prime > 5 ends in 5. Primorials ≥ 5# are never multiplied by an integer ending
in 5 to get the next primorial. Therefore, no primorial ends in 50. All primorials ≥ 5#
end {10, 30, 70 or 90}. Any of those divided by 2 gives an integer ending in 5. Return link:
2

D Copyright and References
Twin Prime Conjectures 1, 2 and 3
Copyright © 2012 Mike Kaarhus
I may update and/or delete this article.

å 22



KAARHUS TWIN PRIME CONJECTURES 1, 2 and 3

References
[1] D. A. Goldston, Are the Twin Primes Infinitely Many? (2009), p. 2,

www.math.sjsu.edu/, ↑1

[2] C. R. Greathouse IV, PARI script (2012)
oeis.org/, ↑3.3

[3] C. R. Greathouse IV, Table of n, a(n) for n = 1..204 (2012)
oeis.org/, ↑3.3

[4] M. G. Kaarhus, OEIS Sequence A218046 (2012)
oeis.org/, ↑3.3

å 23

http://www.math.sjsu.edu/~goldston/twinprimes.pdf
http://oeis.org/A218046/
http://oeis.org/A218046/b218046.txt
http://oeis.org/A218046/

	Introduction
	Variables

	Conjectures 1, 2 and 3
	Evidence That Each r Is In a Unique Linked Set {r, g, b}
	123 Ghost Primes Linked to the 75 Smallest r > 5
	g and b Linked to Eight Larger r
	The Smallest Ghost Primes

	Bailing-wire Analyses
	Theorem: g+1 is congruent to 0 (mod 6)
	Theorem: Each linked g and r end in the same digit.
	The g are somewhat p-like, and somewhat r-like
	Theorem: If b = r, then y has a factor of r
	Theorem: If b = (candidate g), z has a factor of (candidate g)
	A Reiteration of g

	Conclusions
	Acknowledgment
	Ghost Primes Are Not Like Chen Primes
	Only Some g Are Sophie Germain
	A Very Simple Theorem
	Copyright and References

